一轮复习第三单元检测试题

可能用到的相对原子质量:

H-1 C-12 N-14 O-16 Na-23 Al-27 S-32 Ca-40 Cu-64

第 [卷 选择题 (共 48 分)

- 一、选择题 (每小题只有一个选项符合题意,本题包含 24 个小题,每小题 2 分,共 48 分)
- 1. 化学与生产、生活、社会密切相关。下列有关说法中错误的是
 - A. 国产大客机 C919 大规模使用先进的材料铝锂合金,该合金密度小,强度高
 - B. SiO₂制成的玻璃纤维,由于导电能力强而被用于制造通讯光缆
 - C. 鼓励汽车、家电"以旧换新",可减少环境污染,发展循环经济,促进节能减排
 - D. 我国在南海成功开采的可燃冰($CH_4 \cdot nH_2O$)不会带来酸雨等环境污染
- 2. 下列物质的分类按强电解质、弱电解质、非电解质的顺序组合全部正确的是
 - A. NaCl, HF, Cl₂

- B. NaHSO₄, NaHCO₃, CCl₄
- C. Ba(OH)₂, NH₃, Cu
- D. AgCl, H₂S, C₂H₅OH
- 3. 下列有关化学用语表示正确的是
 - A. S 原子的结构示意图: (+16) 2 8 8
 - C. HClO 的结构式: H—O—Cl
- B. 原子核内有8个中子的碳原子 \cdot C
- D. 乙烯的结构简式: CH₂CH₂

- 4. 下列说法中正确的是
 - A. 加入催化剂能改变化学反应的热效应
 - B. 吸热反应必须在加热条件下才能发生,而放热反应则无须加热
 - C. 根据能量守恒, 在化学反应中, 反应物的总能量与生成物总能量一定相等
 - D. 物质发生化学变化的同时都伴随能量变化
- 5. 下列说法中错误的是
 - A. 含离子键的化合物一定是离子化合物
 - B. NH3的水溶液能导电, 所以 NH3 是电解质
 - C. 由非金属元素组成的化合物不一定是共价化合物
 - D. 强电解质溶液的导电能力不一定比弱电解质溶液的强
- 6. 下列物质在指定条件下电离方程式正确的是
 - A. H₂CO₃ 溶于水: H₂CO₃ === 2H⁺+CO₃²⁻

化学试题

第1页共8页

- B. Al(OH)₃酸式电离: Al(OH)₃=AlO₂+H₂O+H⁺
- C. NaHS 的电离: NaHS=Na⁺+H⁺+S²⁻
- D. NaHSO₄加热熔化: NaHSO₄=Na⁺+HSO₄-
- 7. 完成下列实验, 所用仪器或操作合理的是

A	В	С	D
配制250mL0.10mol·L ⁻¹	除去工业乙醇中的难溶杂质	除去粗盐水中	用标准NaOH溶液滴
NaOH 溶液	除去工业石辟中的难价乐则	的不溶物	定锥形瓶中的盐酸
水 1.0 g NaOH	冷水		

- 8. 常温下,下列各组离子一定能在指定溶液中大量共存的是
 - A. 使酚酞变红色的溶液中: Na+、Al3+、SO42-、Cl-
 - B. $\frac{K_W}{c(H^+)}$ =1×10⁻¹³ mol•L⁻¹ 的溶液中: NH₄+、Ca²⁺、Cl⁻、NO₃-
 - C. 与 Al 反应能放出 H₂ 的溶液中: Fe²⁺、K⁺、NO₃⁻、SO₄²⁻
 - D. 水电离的 $c(H^+)=1\times 10^{-13}$ mol·L⁻¹ 的溶液中: K⁺、Na⁺、AlO₂⁻、CO₃²⁻
- 9. N_4 是阿伏加德罗常数的值。下列说法正确的是
 - A. 22.4 L(标准状况)¹⁴N₂中含有 7N_A个中子
 - B. 1L 0.1mol·L⁻¹ 氨水溶液中的 OH⁻数目小于 0.1N₄
 - C. 标准状況下,2.24L 己烷中共价键的数目为 $1.9N_A$
 - D. $0.1 \text{ mol } H_2(g)$ 和 $0.1 \text{ mol } I_2(g)$ 置于密闭容器中充分反应,其原子总数为 $0.2N_A$
- 10. 下列指定反应的离子方程式正确的是
 - A. 将饱和 FeCl₃ 溶液滴入沸水中制备 Fe(OH)₃ 胶体: Fe³⁺+3H₂O=Fe(OH)₃ \ +3H⁺
 - B. 向硫酸铝溶液中滴加过量氨水: Al³++3NH₃·H₂O=Al(OH)₃↓+3NH₄+
 - C. 向 NaClO 溶液中通入过量的 SO₂: SO₂+ClO⁻+H₂O=HSO₃-+HClO
 - D. 向(NH₄)₂Fe(SO₄)₂溶液中滴加过量 NaOH 溶液: Fe²⁺+2OH⁻=Fe(OH)₂↓
- 11. 下列关于热化学反应的描述中正确的是
 - A. 已知稀盐酸和稀氢氧化钠溶液反应的中和热 $\Delta H = -57.3 \text{ kJ-mol}^{-1}$,则 H_2SO_4 溶液和 $\text{Ca}(\text{OH})_2$

溶液反应的中和热 $\Delta H = 2 \times (-57.3) \text{ kJ-mol}^{-1}$

- B. 甲烷的燃烧热为 890.3 kJ·mol⁻¹,则 CH₄(g)+2O₂(g)=CO₂(g)+2H₂O(l) ΔH =-890.3 kJ·mol⁻¹
- C. 已知: 一定条件下, $N_2(g) + 3H_2(g) = 2NH_3(g)$ $\Delta H = -92.4 \text{ kJ} \cdot \text{mol}^{-1}$; 将 1.5 mol H_2 和 过量的 N_2 在此条件下充分反应,放出热量 46.2 kJ
 - D. 己知 $2C(s)+2O_2(g)=2CO_2(g)$ ΔH_1 , $2C(s)+O_2(g)=2CO(g)$ ΔH_2 , 则 $\Delta H_1>\Delta H_2$
- 12. 下列说法中错误的是
 - A. 活化分子之间发生的碰撞不一定为有效碰撞
 - B. 升高温度,一般可使活化分子的百分数增大,因而反应速率增大
- C. 对有气体参加的化学反应,缩小体积增大压强,可使单位体积内活化分子数增加,因而 反应速率增大
- D. 加入适宜的催化剂,可使分子能量增加,从而增加活化分子百分数,因而反应速率增大13. 短周期主族元素 X、Y、Z、W 的原子序数依次增大,X 是地壳中含量最多的元素,Y 原子的最外层有 2 个电子,Z 的单质晶体是应用最广泛的半导体材料,W 与 X 位于同一主族。下列说法正确的是
 - A. 原子半径: r(W)>r(Z)>r(Y)>r(X)
 - B. 由 X、Y 组成的化合物是离子化合物
 - C. Z 的最高价氧化物对应水化物的酸性比 W 的强
 - D. W 的简单气态氢化物的热稳定性比 X 的强
- 14.一定温度下,将 1mol A 和 2mol B 放入 5 L 的密闭容器中发生如下反应: A(s)+2B(g) —— C(g)+2D(g) $\Delta H < 0$,经 5 min 后,测得容器内 B 的浓度减少了 $0.2 mol \cdot L^{-1}$ 。下列叙述正确的是
 - A. 加入少量 A, 反应速率加快
 - B. 反应前 5 min 的平均速率 ν(C)=0.02 mol•L⁻¹• min⁻¹
 - C. 保持体积不变,向容器充入一定量氦气,压强增大,反应速率加快
 - D. 升高温度,正反应速率减小,逆反应速率加快
- 15. 恒温恒容的情况下,一定能说明反应 A(g)+2B(g) === 2C(g)达到化学平衡状态的是
 - A. 容器内气体的压强不随时间而变化
 - B. 容器内气体的密度不随时间而变化
 - C. 单位时间内生成 1 mol C(g)的同时消耗 1 mol B(g)
 - D. A(g)、B(g)、C(g)的物质的量之比为 1:2:2
- 16. 下列事实不能用勒夏特列原理解释的是
 - A. 光照新制的氯水时,溶液的颜色变浅

- B. 加催化剂, 使 N₂和 H₂在一定条件下转化为 NH₃
- C. 在稀醋酸溶液里加入少量醋酸钠固体,溶液中的 $c(H^+)$ 减小
- D. 增大压强,有利于 SO₂ 与 O₂ 反应生成 SO₃
- 17. 25℃, 1.01×10⁵Pa 时, 反应 2N₂O₅(g)=4NO₂(g)+O₂(g) Δ*H*=+109.8 kJ•mol⁻¹, 能自发进行 的原因是
 - A. 是吸热反应

B. 是放热反应

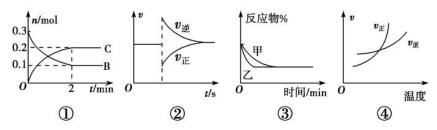
C. 是熵减少的反应

- D. 熵增大效应大于焓增大的效应
- 18. 下列有关化学平衡常数的描述中正确的是
 - A. 化学平衡常数的大小取决于化学反应本身,与其他外界条件无关
 - B. 相同温度下,反应 A(g)+B(g) \longrightarrow C(g)与 C(g) \longrightarrow A(g)+B(g)的化学平衡常数相同
 - C. 反应 $2SO_2(g)+O_2(g) \Longrightarrow 2SO_3(g)$ $\Delta H < 0$ 的化学平衡常数随温度升高而增大
 - D. 反应 A(g)+B(g) \longrightarrow 2C(g)的平衡常数达式为 $K=\frac{c^2(C)}{c(A) \cdot c(B)}$
- 19. 在一定温度下,将气体 X 和气体 Y 各 0.15 mol 充入 10 L 的恒容密闭容器中,发生反应: $X(g)+Y(g) \Longrightarrow 4Z(g)$ $\Delta H < 0$,一段时间后达到平衡,反应过程中测定的数据如下表:

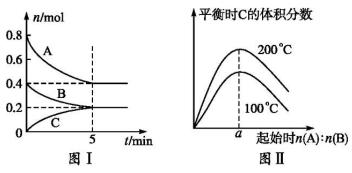
t/min	2	4	7	9
n(Y)/mol	0.12	0.11	0.10	0.10

下列说法正确的是

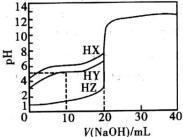
- A. 反应前 4min 的平均速率 $\nu(Z)=1\times10^{-3}$ mol·L⁻¹• min⁻¹
- B. 其它条件不变, 再充入 X、Y 各 0.15 mol, 平衡时 *n*(Z)<0.4 mol
- C. 其它条件不变,降低温度的瞬间,速率 v _ 降低比 v _ 多
- D. 该温度下,此反应的平衡常数 K=0.16
- 20. 下列关于电解质溶液的说法正确的是
 - A. 0.1 L 0.5 mol•L⁻¹ CH₃COOH 溶液中含有的 H⁺数为 0.05N_A
 - B. 室温下,稀释 0.1 mol·L⁻¹ CH₃COOH 溶液,溶液的导电能力增强
 - C. 向 0.1 mol·L⁻¹ CH₃COOH 溶液中加入少量水,溶液中所有离子浓度均减小
 - D. CH₃COOH 溶液加水稀释后,溶液中 c(CH₃COOH) c(CH₃COO⁻) 的值减小
- 21. 常温下,pH=13 的氢氧化钠溶液与 pH=2 的稀硫酸混合,所得混合溶液的 pH=11,则氢氧 化钠溶液与稀硫酸的体积比是


A. 1:11

B. 11:1

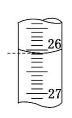

C. 1:9

D. 9:1

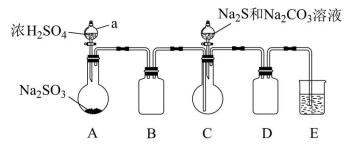

22. 化学中常借助曲线图来表示某种变化过程,有关下列四个曲线图的说法错误的是

- A. 对反应: $aA(s)+2B(g) \longrightarrow xC(g)$,根据图①可以求出 x=2
- B. 图②可以表示对某化学平衡体系只改变温度后反应速率随时间的变化
- C. 图③可以表示压强对 2A(g)+2B(g) \Longrightarrow 3C(g)+D(g)的影响, 乙的压强比甲大
- D. 平衡后升高温度,图④表示的反应中反应物的转化率增大
- 23. 在容积为 2 L 的恒容密闭容器中发生反应 xA(g)+yB(g) === zC(g), 图 I 表示 200 \mathbb{C} 时容器中 A、B、C 物质的量随时间的变化,图 II 表示 200 \mathbb{C} 和 100 \mathbb{C} 下平衡时 C 的体积分数随起始 n(A):n(B)的变化关系。则下列结论正确的是

- A. 200 ℃时,反应前 5min 的平均速率 v(B)=0.02 mol•L⁻¹• min⁻¹
- B. 图 II 可知反应 $xA(g)+yB(g) \Longrightarrow zC(g)$ 的 $\Delta H<0$,且 a=2
- C. 若在图 I 所示的平衡状态下,再向体系中充入 He,重新达到平衡前 $v_{\text{\tiny IE}} > v_{\text{\tiny W}}$
- D. 200 ℃时,向容器中充入 2 mol A 和 1 mol B,达到平衡时,A 的体积分数大于 0.5
 24.25℃时,用浓度为 0.1000 mol•L¹ 的 NaOH 溶液滴定体积均为 20.00mL 浓度均为 0.1000 mol•L¹
- 的三种酸 HX、HY、HZ,滴定曲线如图所示。下列说法正确的是
 - A. 酸性强弱顺序是 HX>HY>HZ
 - B. 由图象可知, HY 为弱酸, 其电离常数数量级为 10-6
 - C. pH=2的 HZ 溶液加水稀释 10倍, pH 为 3
 - D. 加入 20.00mLNaOH 溶液时,只有 HY 溶液达到滴定终点


第Ⅱ券 非选择题(共52分)

- 二、非选择题(共4个小题,52分,请将此部分答案填写在答题卷上)
- 25. (14 分)某学生用 0.1500 mol·L⁻¹NaOH 溶液测定某未知浓度的盐酸溶液。
- (1)该滴定操作可分解为如下几步:
 - A. 移取 25.00 mL 待测的盐酸溶液注入洁净的锥形瓶,并加入 2~3 滴酚酞作指示剂
 - B. 用标准溶液润洗碱式滴定管 2~3 次
 - C. 排气泡, 使碱式滴定管尖嘴充满溶液
 - D. 取 NaOH 标准溶液注入碱式滴定管至 0 刻度以上 2~3cm
 - E. 调节液面至 0 或 0 刻度以下,记下读数
 - F. 把锥形瓶放在滴定管的下方,用 NaOH 标准溶液滴定至终点,记下滴定管液面的读数。


正确操作的顺序是(用序号字母填写) $B \rightarrow ___ \rightarrow E \rightarrow __ \rightarrow E \rightarrow __ \rightarrow \Box$

- (2)该小组某一次滴定操作中,碱式滴定管的液面位置如图所示,则此时的读数为___mL
- (3)用 NaOH 溶液平行滴定三次,平均消耗 NaOH 溶液的体积为 20.00 mL,由此计算盐酸

的浓度为 mol•L⁻¹

- (4)下列操作(其他操作正确)会造成测定结果偏高的有
 - A. 滴定终点读数时俯视读数
 - B. 碱式滴定管滴定前尖嘴部分有气泡,滴定后消失
 - C. 锥形瓶水洗后未干燥
 - D. 锥形瓶水洗后用待测稀盐酸溶液润洗
- (5)氧化还原滴定实验与酸碱中和滴定类似。测血钙的含量时,进行如下实验:
- a.将 2.00 mL 血液用蒸馏水稀释后,向其中加入足量草酸铵(NH₄)₂C₂O₄ 晶体,反应生成 CaC₂O₄ 沉淀,将沉淀用稀硫酸处理得 H₂C₂O₄溶液。
 - b.将 a 得到的 H₂C₂O₄溶液,再用酸性 KMnO₄溶液滴定。
 - c.终点时用去 24.00 mL l.0×l0⁻⁴ mol•L⁻¹ 的 KMnO₄ 溶液。
- ①判断滴定终点的方法是
- ②写出用 KMnO4滴定 H₂C₂O₄ 的离子方程式
- ③血液中含钙离子的浓度为_____mol•L-1
- 26. (14分)Na₂S₂O₃·5H₂O 是无色透明晶体,易溶于水,遇酸易分解。某实验室模拟工业硫化碱法制取硫代硫酸钠晶体,实验装置如图所示(省略夹持装置)

(1)a 仪器的名称为	,装置]	D 的作用是	;装置 E 中应盛放的试剂				
是	°						
(2)将 Na ₂ S 和 Na ₂ CO ₃ 以 2:1 的	物质的量之比西	己成溶液再通入 SC	O ₂ ,便可制得 Na ₂ S ₂ O ₃ 和 CO ₂ ,	则			
装置 C 中发生反应的化学方程式为							
(3)实验过程中, C 中溶液 pH 要	控制不小于7白	勺理由是					
		(F	用离子方程式解释)。				
(4) Na ₂ S ₂ O ₃ 可作脱氯剂。向 Na ₂ S	S ₂ O ₃ 溶液中通)	\ 少量氯气, S ₂ O ₃	²⁻ 转变为 SO ₄ ²⁻ ,则 Na ₂ S ₂ O ₃ 具	有_			
(填"氧化性"或"过	还原性")						
(5)硫代硫酸钠晶体中可能含有 Na ₂ SO ₃ 、Na ₂ SO ₄ 等杂质。利用所给试剂实验,检测产品中是否存							
在 Na ₂ SO ₄ 杂质,简要说明实验操作、现象和结论							
(可供选择的试剂有:稀盐酸、稀	希硫酸、稀硝酸	、BaCl ₂ 溶液、A _ξ	gNO₃溶液)				
27. (14分)CH ₄ 是一种清洁燃料	,也是重要的二	[业原料。					
I. CH4—CO2催化重整可以得到	到 CO 和 H ₂						
己知: ①CH ₄ (g)+H ₂ O(g)=CO(g	$(g) + 3H_2(g)$	$_{1}H_{1} = +206.2 \text{ kJ} \cdot \text{m}$	mol^{-1}				

II. 工业上一般以 CO 和 H₂ 为原料合成 CH₃OH(甲醇),该反应的热化学方程式为:

 $2CH_4(g) + 2H_2O(g) = CO_2(g) + 4H_2(g)$ $\Delta H_2 = +165.0 \text{ kJ} \cdot \text{mol}^{-1}$

 $CO(g) + 2H_2(g) \rightleftharpoons CH_3OH(g) \Delta H_1 = -116 \text{ kJ} \cdot \text{mol}^{-1}$

写出该催化重整反应的热化学方程式

(1)下列措施中有利于增大该反应的反应速率且利于反应正向进行的是 (填字母)

A. 随时将 CH₃OH 与反应混合物分离 B. 降低反应温度

C. 增大体系压强 D. 使用高效催化剂

(2) t℃时,在体积为 2L 的密闭容器中加入 2.00 mol H₂(g)和 1.00 mol CO(g)。CO(g)的物质的量随时间的变化如表:

时间/s	0	2	5	10	20	40	80
物质的量/mol	1.00	0.50	0.375	0.25	0.20	0.20	0.20

化学试题

第7页共8页

①下列情况能说明该反应一定法	达到平衡状态的	是(;	填字母)				
A. v(CO)=2v(H ₂) B. 断裂 2 个 H—H 键同时形成 3 个 C—H 键							
C. CH ₃ OH 的浓度保持不变 D. 气体的平均相对分子质量保持不变							
②0~20s 内用氢气浓度变化表示	示反应速率		_				
③t℃时,该反应的平衡常数为	J						
④其它条件不变,向上述平衡(体系中再充入 1ı	mol CO(g)、2 mol H	$I_2(g)$ 、1mol CH ₃ O	OH(g),此时			
v _正 v _逆 (填">""<"或"	"=")						
(3)CO 在不同温度下的平衡转位	化率与压强的关	系如图所示。实际结	生产条件控制在:	250℃、			
1.3×10 ⁴ kPa 左右,选择此压强	的理由是						
数 100							
H₂O 2 mol·L ⁻¹ 硫酸	H ₂ O ₂ Na	OH溶液		10			
含铬污 酸浸 过滤 I 滤液 理后	_{= 1}	H=8 → 过滤Ⅱ 滤液Ⅱ	· 納离子交 換树脂	O2 ↓ C I(OH)(H ₂ O) ₅ SO ₄			
己知: ①硫酸浸取液中的金属剂	离子主要是 Cr³+	,其次是 Fe³+、Al³·	+、Ca ²⁺ 和 Mg ²⁺ 。				
②常温下,部分阳离子!	以氢氧化物形式	沉淀时溶液的 pH 如	□下:				
阳离子	Fe ³⁺ Mg ²⁺	Al ³⁺	Cr ³⁺				
沉淀完全时的 pH	3.7 11.1	5.4(>8 溶解)	9(>9 溶解)				
(1)酸浸时,为了提高浸取率可	 采取的措施有	<u> </u>		ɪ (写出一条)			
$(2)H_2O_2$ 的作用是将滤液 I 中的		O ₇ 2-, 写出此反应的	的离子方程式:				
(-)2-2 H411 / 14/2 1	, , , , , , , , , , , , , , , , , , , ,		<u> </u>				
(3)加入 NaOH 溶液 pH 调至 8,	通过沉淀除去日	的金属离子主要为_					
(4)加入 NaOH 溶液,又可以将	Cr ₂ O ₇ ²⁻ 转化为(CrO4 ²⁻ ,结合离子方	程式解释 Cr ₂ O ₇	2-转化的原因			
(5)钠离子交换树脂的反应原理 II中的金属阳离子有	为: M ⁿ⁺ +nNaR	=MR _n +nNa ⁺ ,则 ^元	利用钠离子交换。	树脂可除去滤液			